– Typeset by GMNI & Foil T_EX –

INTERPOLACIÓN POR B-SPLINES

F. Navarrina & GMNI

GMNI — Grupo de Métodos Numéricos en Ingeniería

Departamento de Métodos Matemáticos y de Representación Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos Universidad de A Coruña, España

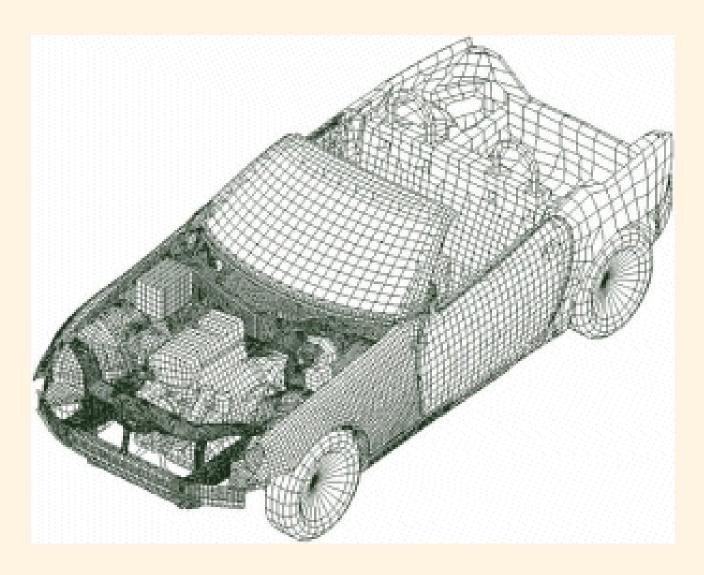
e-mail: fermin.navarrina@udc.es

página web: http://caminos.udc.es/gmni

Índice

- ▶ Motivación
- ▶ Splines de clase C^0
- ► Interpolación para CAD
- ▶ Curvas de Bézier
- ▶ B-Splines
- **► NURBS**
- ► B-Splines 2D y 3D
- ► T-Splines
- **► IGA**

Motivación (I)



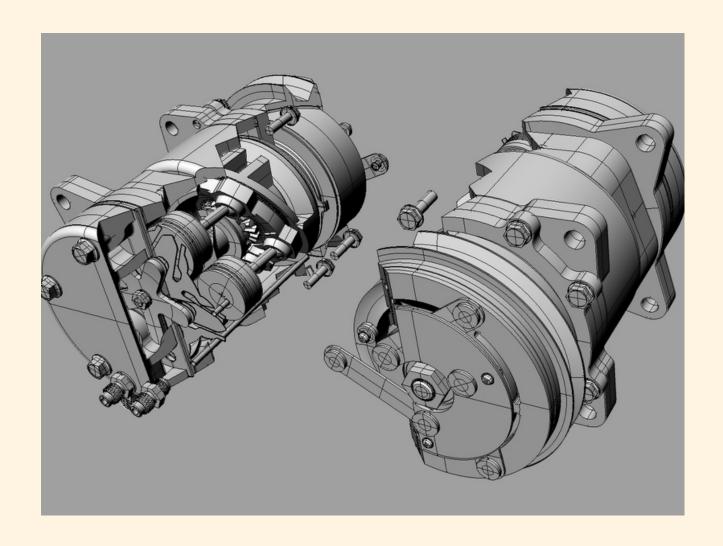
Motivación (IIa)

Modelo CAD de un coche. Por cortesía de Flavio Adriani y Rhinoceros http://www.rhino3d.com/>

Motivación (IIb)

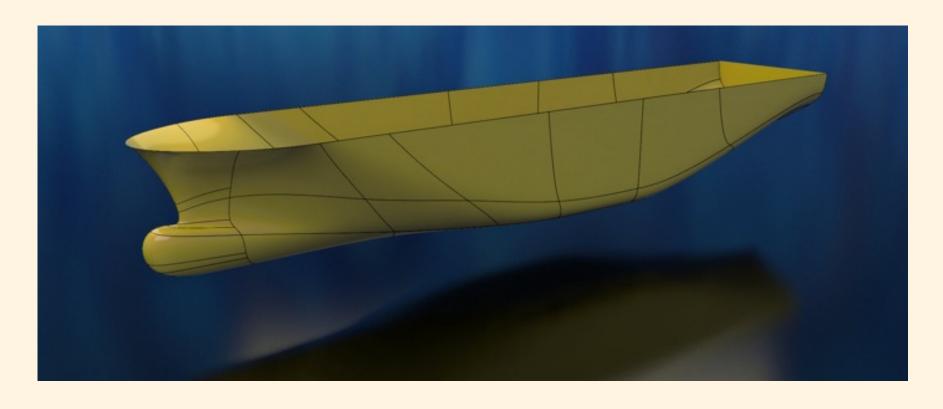
Modelo CAD de un coche. Por cortesía de Tibor Toth < http://www.tsplines.com/community/gallery.html>

Motivación (IIc)



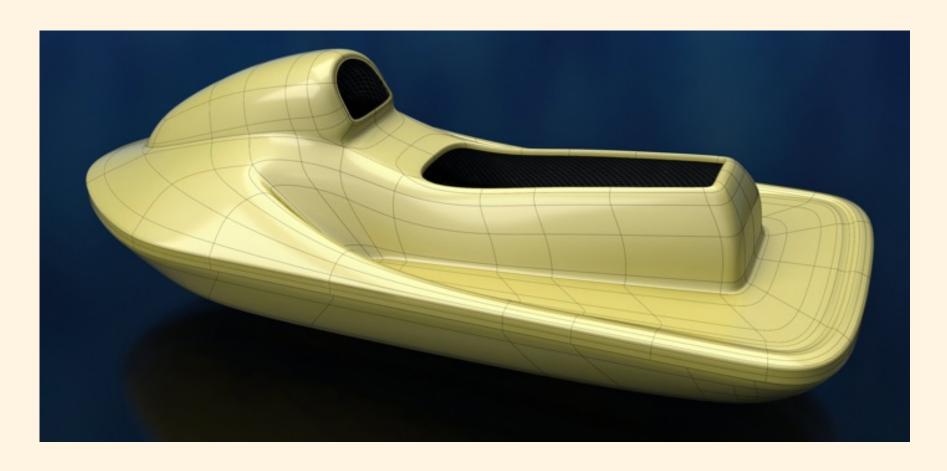
Modelo CAD de un compresor de AC. Por cortesía de Jayon Park y Rhinoceros http://www.rhino3d.com/>

Motivación (IId)



 ${\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}}} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} > \underline{\color{red} \textbf{Modelo CAD del casco de un buque. Por cortes\'(a de < \underline{\texttt{http://www.tsplines.com/community/gallery.html}})} >$

Motivación (Ile)



Modelo CAD del casco de una moto acuática. Por cortesía de

<http://www.tsplines.com/community/gallery.html>

Motivación (IIf)

Modelo CAD del casco de un yate. Por cortesía de Nordhavn Yatchts y Rhinoceros < http://www.rhino3d.com/>

Splines de clase C^0 (la)

ELEMENTOS FINITOS LAGRANGIANOS 1D

El dominio Ω se **discretiza** (subdivide) en **elementos finitos** E_{ie} ,

$$\Omega = \bigcup_{\mathtt{ie}=1}^{\mathtt{ne}} E_{\mathtt{ie}}, \quad \mathsf{siendo} \quad \overset{o}{E}_{\mathtt{ie}1} \cap \overset{o}{E}_{\mathtt{ie}2} = \emptyset \quad \forall_{\mathtt{ie}1 \neq \mathtt{ie}2}.$$

El elemento E_{ie} se define por sus nn nodos, siendo

$$\begin{cases} \xi_{\mathtt{jn}} \in [-1,1] & \to \quad \text{coord. de referencia} \\ \bar{\boldsymbol{r}}_{\mathtt{jn,ie}} & \to \quad \text{coord. espaciales} \end{cases} \text{ de los nodos } \mathbf{jn} = 1, \ldots, \mathbf{nn}.$$

Splines de clase C^0 (lb)

Funciones de Forma Lagrangianas:

$$N_{\mathrm{in}}(\xi) = \prod_{\substack{\mathtt{jn}=1,\ldots,\mathtt{nn}\\\mathtt{jn}\neq\mathtt{in}}} \frac{\xi-\xi_{\mathtt{jn}}}{\xi_{\mathtt{in}}-\xi_{\mathtt{jn}}}, \qquad \qquad \xi \in [-1,1], \quad \mathtt{in}=1,\ldots,\mathtt{nn}.$$

Nótese que

$$N_{\rm in}(\xi_{\rm jn}) = \delta_{\rm in,jn} \quad o \quad {\rm interpolacion \ pura \ en \ los \ nodos},$$

$$\sum_{\rm in=1}^{\rm nn} N_{\rm in}(\xi) = 1 \quad \rightarrow \quad {\rm partici\'on\ de\ la\ unidad.} \quad \mbox{(*)}$$

^(*) Capacidad para representar funciones constantes.

Splines de clase C^0 (Ic)

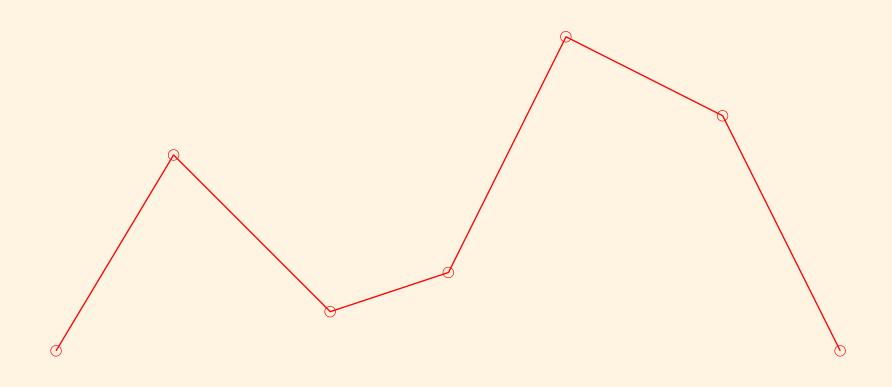
Interpolación Lagrangiana tipo MEF [Isoparamétrica]:

$$\bar{\boldsymbol{r}}^h \in \mathcal{E}_{\text{ie}} \ \Rightarrow \ \begin{cases} u^h(\xi) = \sum_{\text{in}=1}^{\text{nn}} N_{\text{in}}(\xi) \ u_{\text{in},\text{ie}}, \\ \\ \bar{\boldsymbol{r}}^h(\xi) = \sum_{\text{in}=1}^{\text{nn}} N_{\text{in}}(\xi) \ \bar{\boldsymbol{r}}_{\text{in},\text{ie}}, \end{cases} \quad \xi \in [-1,1].$$

Nótese que

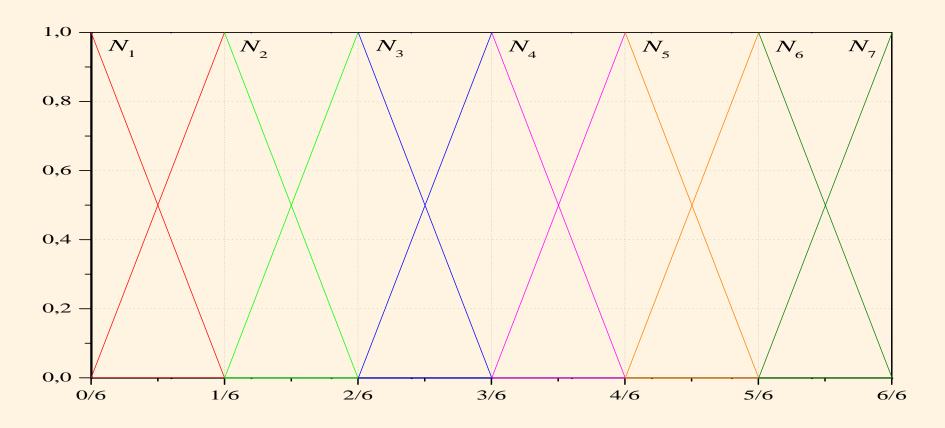
$$u^h(\xi_{jn}) = u_{jn,ie}$$
 \leftarrow interpolación pura en los nodos, $u_{jn,ie} = k \Rightarrow u^h(\xi) = k \; \forall \xi \in [-1,1] \leftarrow$ partición de la unidad.

Splines de clase \mathcal{C}^0 (ld1-1)



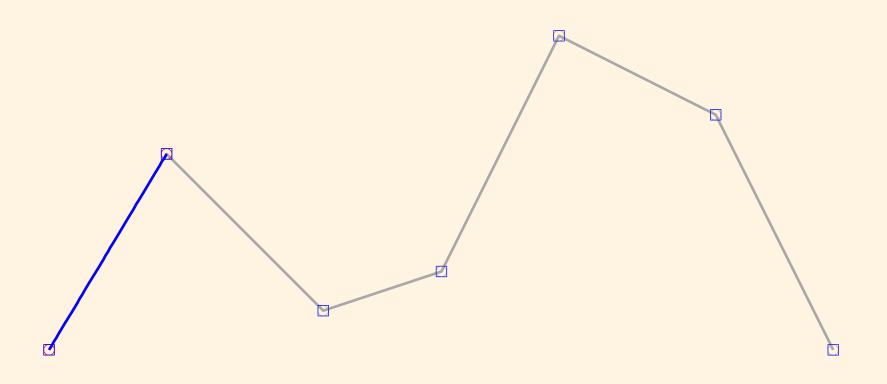
Malla MEF: PUNTOS NODALES (poligonal)

Splines de clase C^0 (ld1-2)

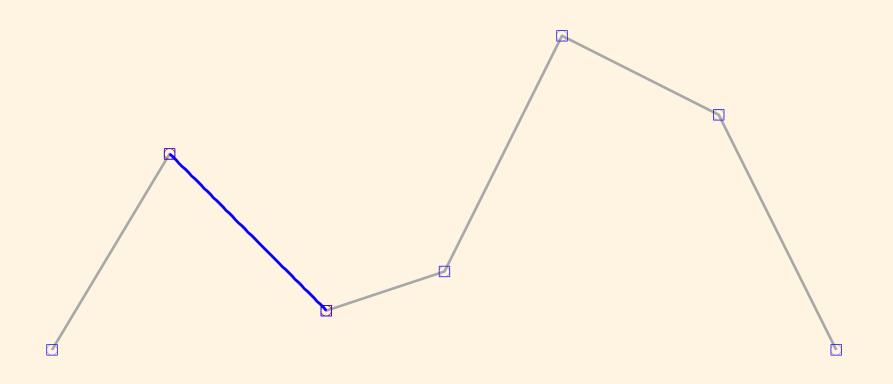


Malla MEF / ELEMENTOS LINEALES DE 2 NODOS: FUNCIONES DE FORMA (comb.) [LOCALES]

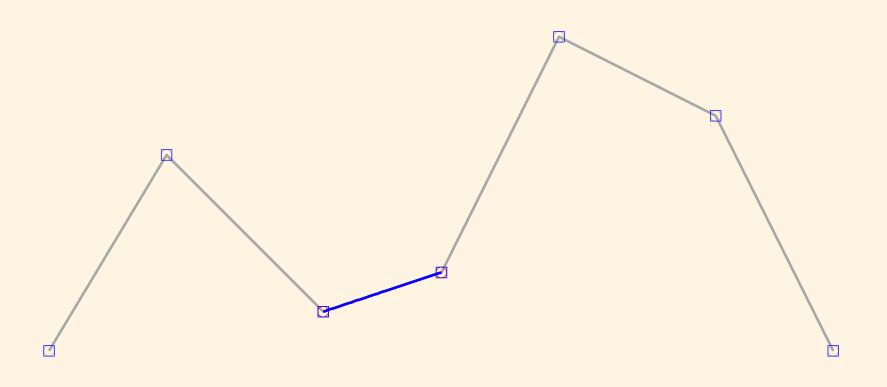
Splines de clase C^0 (ld2-1)



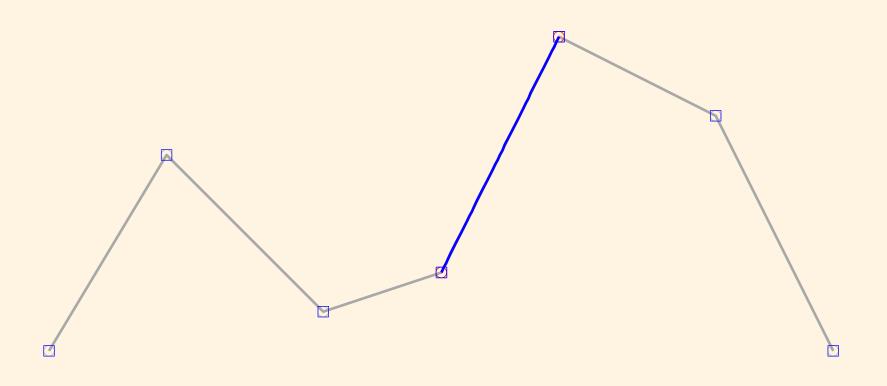
Splines de clase \mathcal{C}^0 (ld2-2)



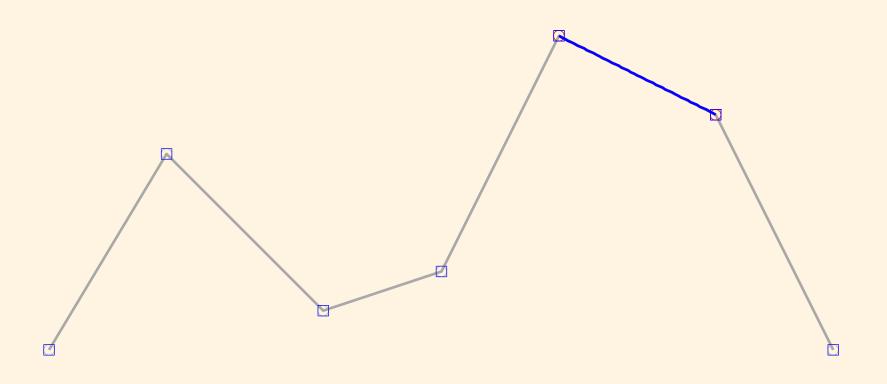
Splines de clase C^0 (ld2-3)



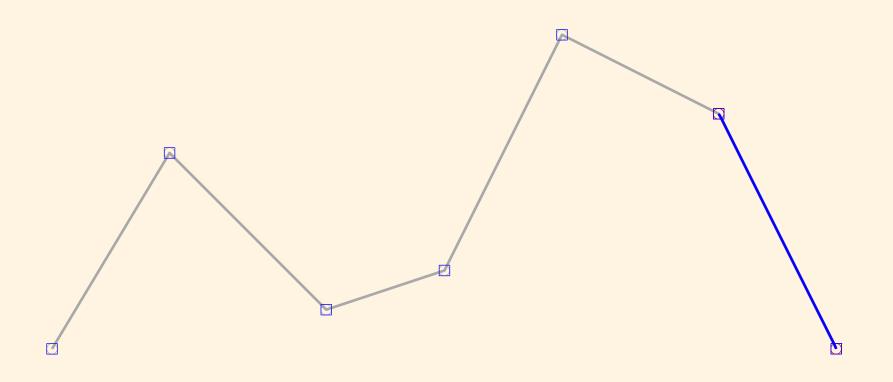
Splines de clase C^0 (Id2-4)



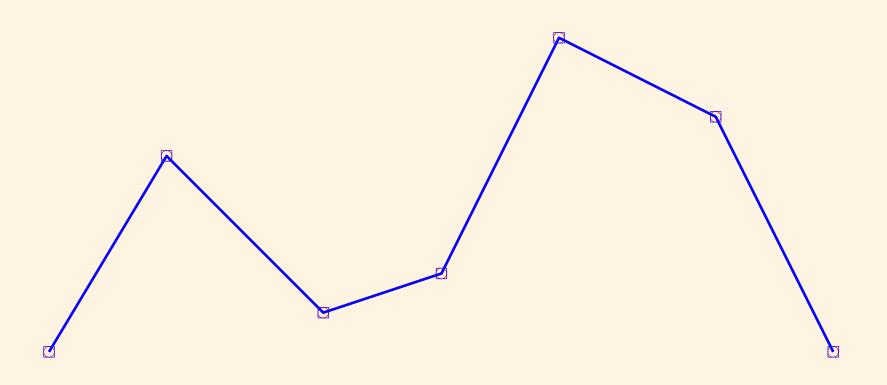
Splines de clase C^0 (Id2-5)



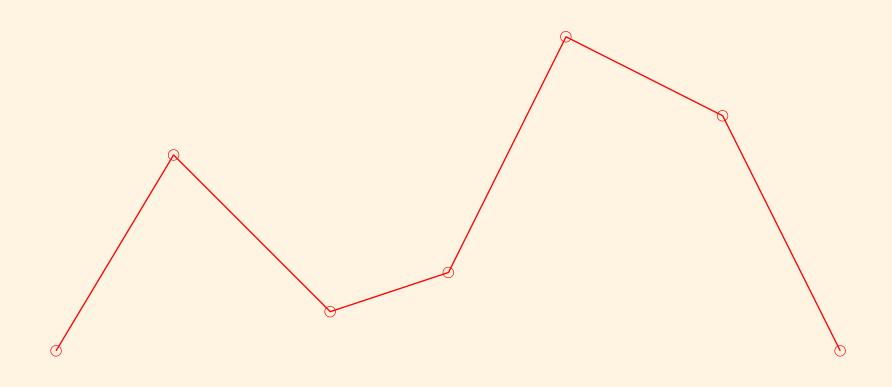
Splines de clase C^0 (ld2-6)



Splines de clase C^0 (ld3)

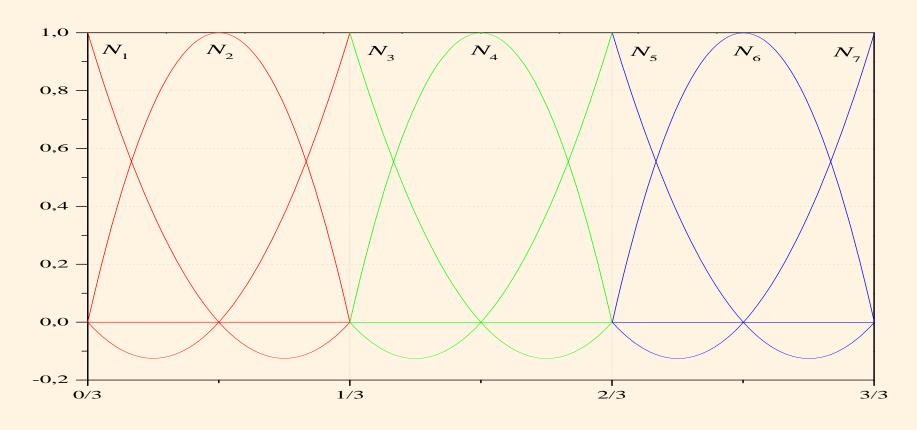


Splines de clase C^0 (le1-1)



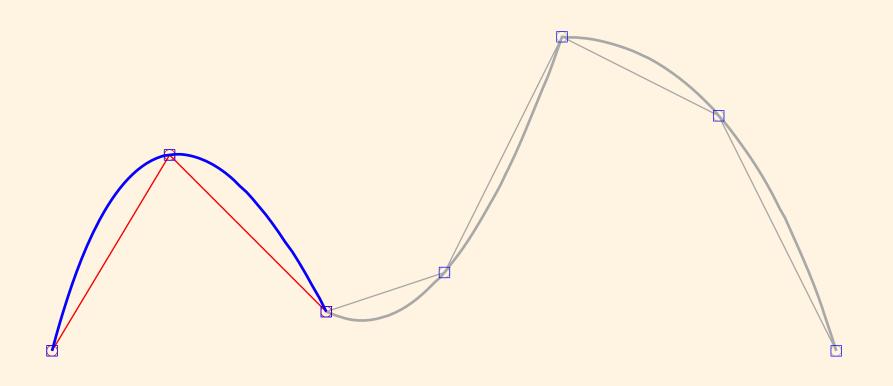
Malla MEF: PUNTOS NODALES (poligonal)

Splines de clase C^0 (le1-2)



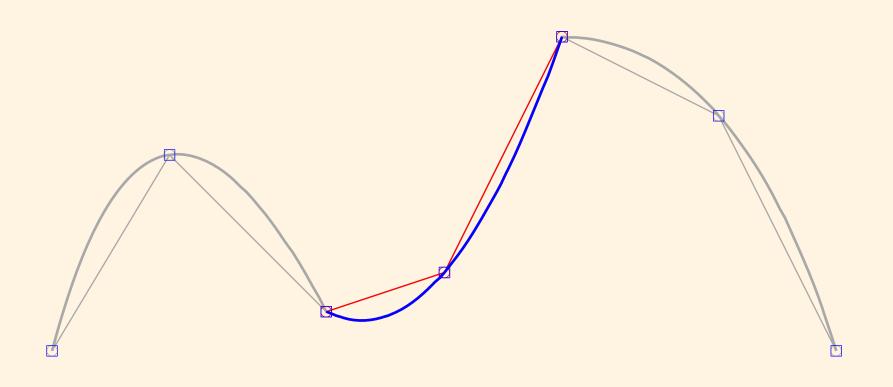
Malla MEF / ELEMENTOS CUADRÁTICOS DE 3 NODOS: FUNCIONES DE FORMA (comb.) [LOCALES]

Splines de clase C^0 (le2-1)



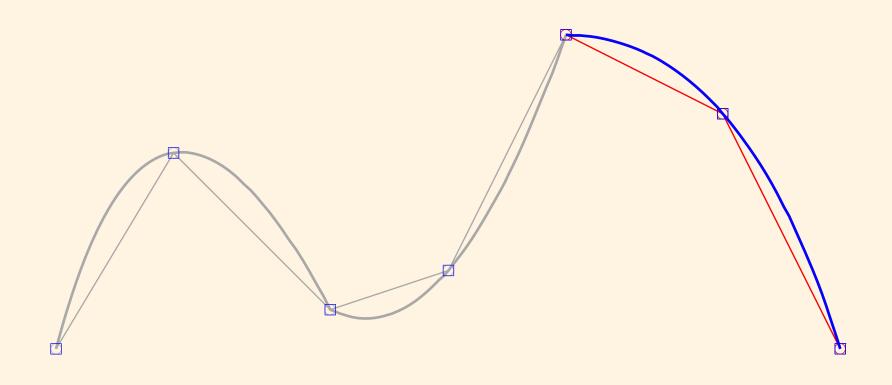
Malla MEF / ELEMENTOS CUADRÁTICOS DE 3 NODOS GEOMETRÍA INTERP. / Elem. # 1

Splines de clase \mathcal{C}^0 (le2-2)



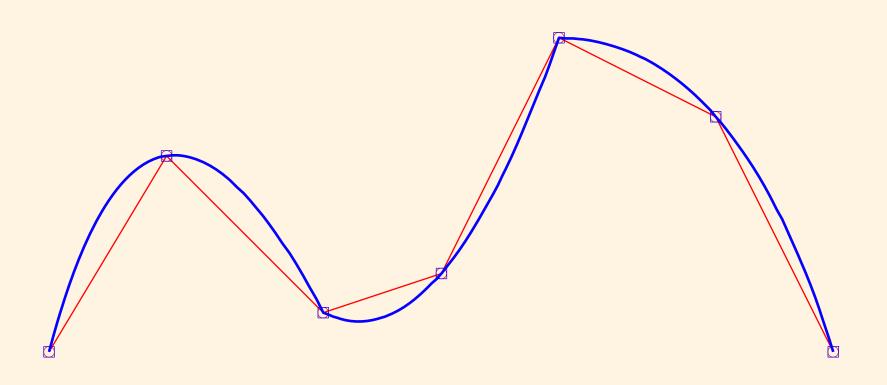
Malla MEF / ELEMENTOS CUADRÁTICOS DE 3 NODOS GEOMETRÍA INTERP. / Elem. # 2

Splines de clase C^0 (le2-3)



Malla MEF / ELEMENTOS CUADRÁTICOS DE 3 NODOS GEOMETRÍA INTERP. / Elem. # 3

Splines de clase \mathcal{C}^0 (le3)



Malla MEF / ELEMENTOS CUADRÁTICOS DE 3 NODOS GEOMETRÍA INTERP.

Interpolación para CAD

Hitos:

1959-1970 → Bézier (Renault), Schoenberg [CAD, B-Splines]

1971-1972 → Cox – De Boor [Formulación recursiva de B-Splines]

1975 → Versprille [NURBS]

1980 \rightarrow Cohen et al. [Oslo Knot Insertion]

1995 → Piegl & Tiller [Algoritmos Estables]

2003 → **Sederberg** [T–Splines]

2005 → Hughes, Cottrell & Bazilevs [IGA]

Curvas de Bézier (la)

CURVAS DE BÉZIER

Polinomios de Bernstein:

$$B_{i,n}(\xi) = \binom{n-1}{i-1} \xi^{i-1} (1-\xi)^{n-i}, \qquad \xi \in [0,1], \quad i=1,\dots,n.$$

Nótese que

$$B_{i,n}(0) = \delta_{i,1}, \ B_{i,n}(1) = \delta_{i,n} \quad \rightarrow \quad \text{interp. pura en puntos 1, } n,$$

$$\sum_{i=1}^{n} B_{i,n}(\xi) = 1 \qquad \qquad \rightarrow \quad \text{partición de la unidad.}$$

Curvas de Bézier (lb)

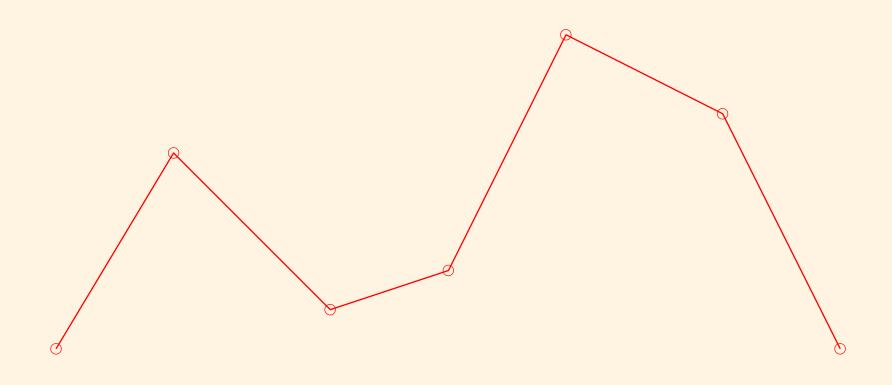
Interpolación de Bézier:

$$\begin{cases} \bar{r}^h(\xi) = \sum_{i=1}^n B_{i,n}(\xi) \; \bar{r}_i, \\ u^h(\xi) = \sum_{i=1}^n B_{i,n}(\xi) \; u_i, \end{cases} \quad \xi \in [0,1].$$

Nótese que

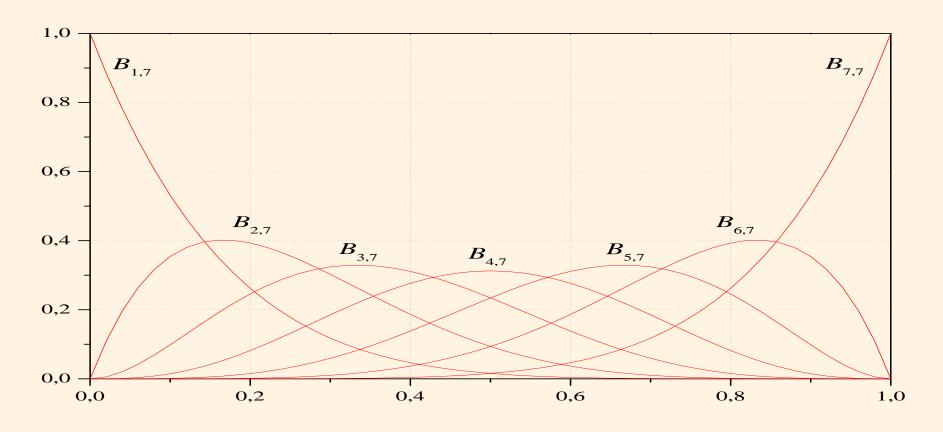
$$u^h(0) = u_1, \ u^h(1) = u_n,$$
 \leftarrow interp. pura en puntos de control $1, n,$ $u_i = k \Rightarrow u^h(\xi) = k \ \forall \xi \in [0, 1] \leftarrow$ partición de la unidad.

Curvas de Bézier (lc1-1)



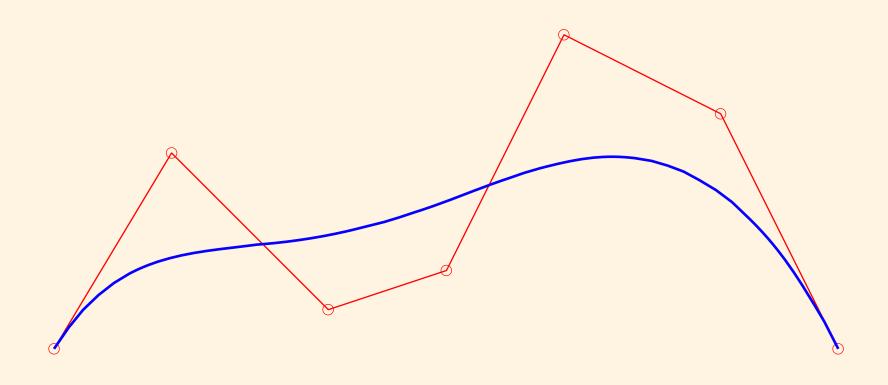
Interpolación de Bézier: PUNTOS DE CONTROL (polígonal)

Curvas de Bézier (lc1-2)



Interpolación de Bézier: FUNCIONES DE FORMA [GLOBALES]

Curvas de Bézier (lc2)



Interpolación de Bézier: GEOMETRÍA INTERP.

B-Splines (I)

KNOT VECTOR

$$\Xi = [\xi_1, \dots, \xi_i, \xi_{i+1}, \dots, \xi_{n+p+1}], \xi_j \in \mathbb{R} \ \forall j.$$

donde

$$\xi_{j} \equiv \mathbf{knot},$$
 $\xi_{i} \leq \xi_{i+1}, \quad 1 \leq i \leq n+p \rightarrow \mathbf{secuencia} \text{ no decreciente,} \quad (*)$
 $[\xi_{i}, \xi_{i+1}] \equiv \mathbf{knot} \mathbf{span},$
 $n \equiv \mathbf{n} \mathbf{umero} \mathbf{of funciones base},$
 $p \equiv \mathbf{grado de los polinomios}.$

^(*) Pero la multiplicidad se permite! (Y tiene importantes efectos).

B-Splines (IIa1)

FÓRMULA RECURSIVA DE COX – DE BOOR

$$N_{i,q}(\xi) = egin{cases} 1 & ext{si } \xi \leq \xi_{i+1}, \ 0 & ext{en caso contrario,} \end{cases} egin{cases} q = 0, \ i = 1, \ldots, n + (p-q). \end{cases}$$

$$N_{i,q}(\xi) = \left(\frac{\xi - \xi_i}{\xi_{i+q} - \xi_i}\right) N_{i,q-1}(\xi) + \left(\frac{\xi_{i+q+1} - \xi}{\xi_{i+q+1} - \xi_{i+1}}\right) N_{i+1,q-1}(\xi), \begin{cases} q = 1, \dots, p, \\ i = 1, \dots, n + (p-q). \end{cases}$$

B-Splines (IIa2)

Nótese que para $\xi_1 \leq \xi \leq \xi_{n+p+1}$

$$\sum_{i=1}^{n} N_{i,p}(\xi) = 1, \quad o \quad \text{partición de la unidad}$$

$$N_{i,p}(\xi) \ge 0,$$

$$N_{i,p}(\xi) \in \mathcal{C}^{p-1}$$

(si los knots se repiten),

$$N_{i,p}(\xi) \neq 0$$

en (p+1) knot spans. (*)

^(*) Sorprendente! → ancho de banda no muy grande.

B-Splines (IIa3)

Si un knot se repite, en el correspondiente valor de ξ ...

- ...la aproximación
 - A pierde un orden de continuidad para cada repetición del knot,
 - \clubsuit es interpolación pura si el knot se repite p veces,
 - \clubsuit se convierte en discontinua si el knot se repite p+1 veces.

B-Splines (IIb)

Interpolación por B-Splines:

$$\begin{cases} \bar{r}^h(\xi) = \sum_{i=1}^n N_{i,p}(\xi) \; \bar{r}_i, \\ u^h(\xi) = \sum_{i=1}^n N_{i,p}(\xi) \; u_i, \end{cases} \quad \xi \in [0, 1].$$

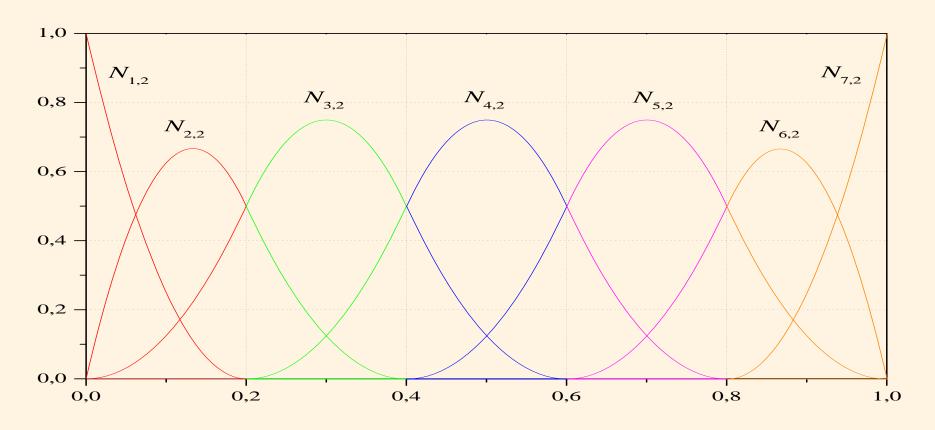
Nótese que

$$u^h(\xi) \neq u_i$$
 \leftarrow no es interp. pura (salvo repetición de knots), $u_i = k \ \Rightarrow \ u^h(\xi) = k \ \forall \xi \in [0,1] \ \leftarrow$ partición de la unidad.

B-Splines (IIc1-1)

Interp. por B-Splines: PUNTOS DE CONTROL (poligonal)

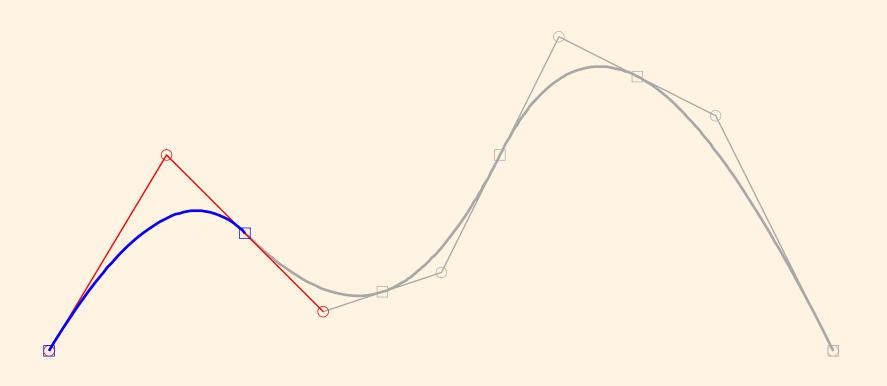
B-Splines (IIc1-2)



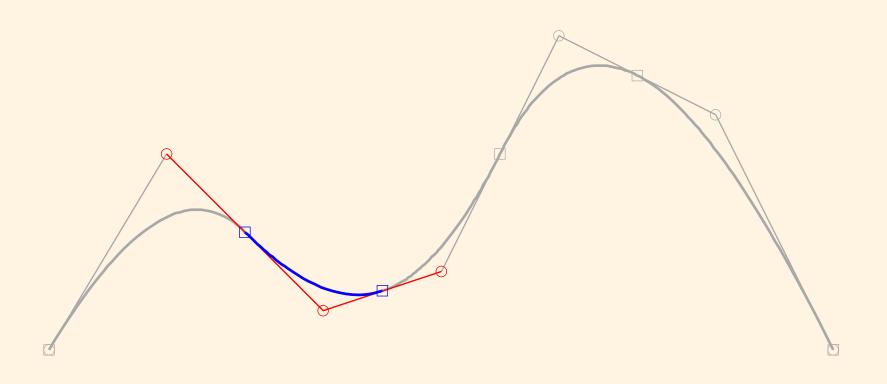
Interp. por B-Splines / ELEM. CUADRÁTICOS DE 3 NODOS: FUNCIONES DE FORMA [LOCALES]

 $n = 7, \ p = 2; \ \Xi = [0.00, 0.00, 0.00, 0.20, 0.40, 0.60, 0.80, 1.00, 1.00, 1.00] \leftarrow \underline{\mathsf{OPEN \& UNIFORM}}$

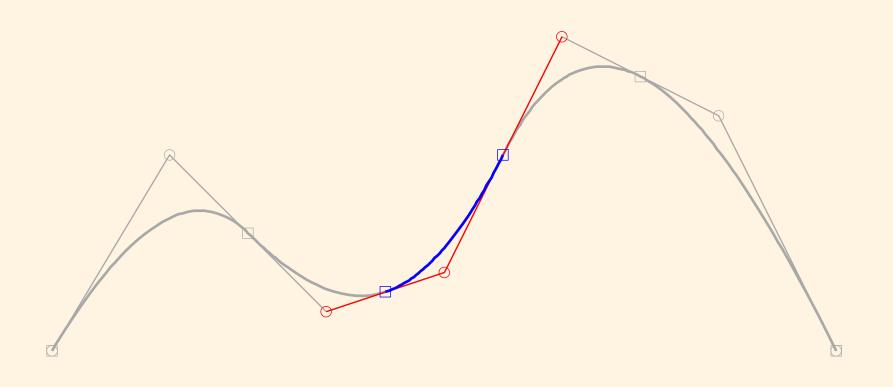
B-Splines (IIc2-1)



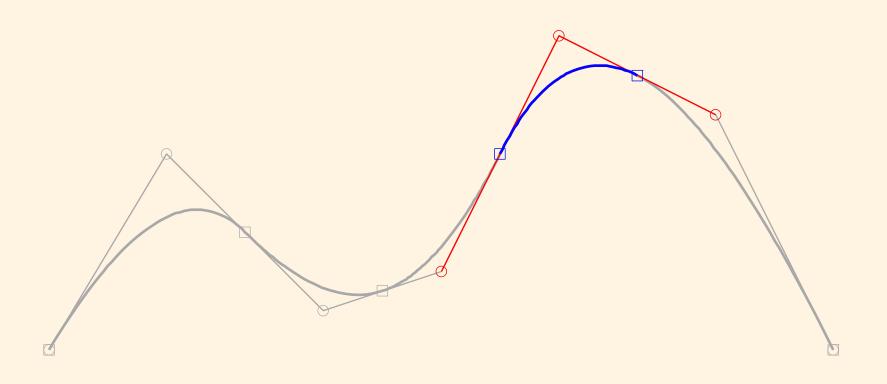
B-Splines (IIc2-2)



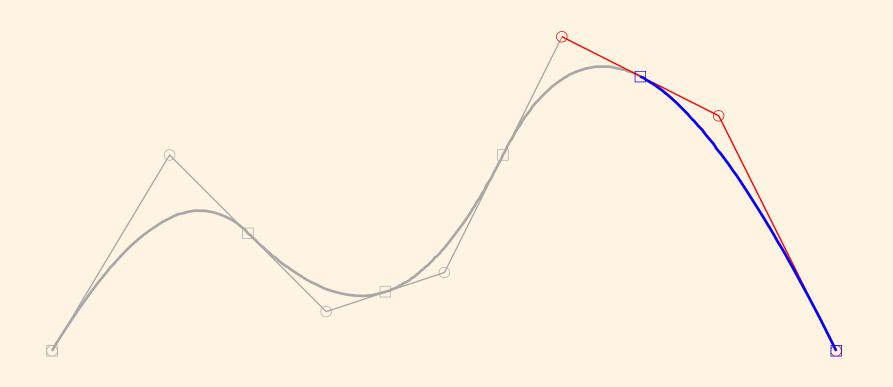
B-Splines (IIc2-3)



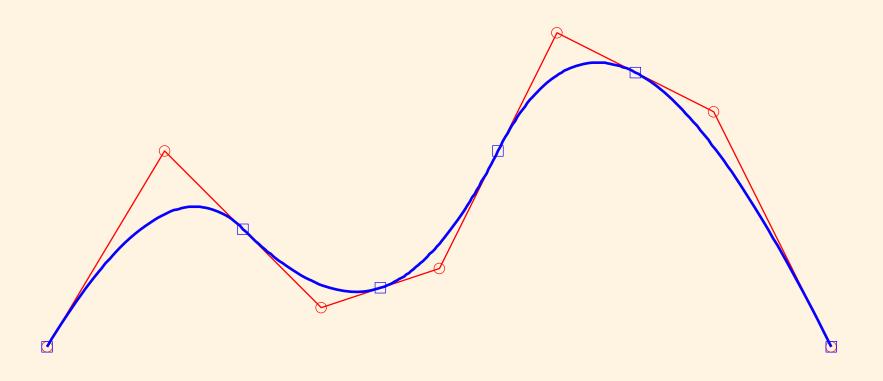
B-Splines (IIc2-4)



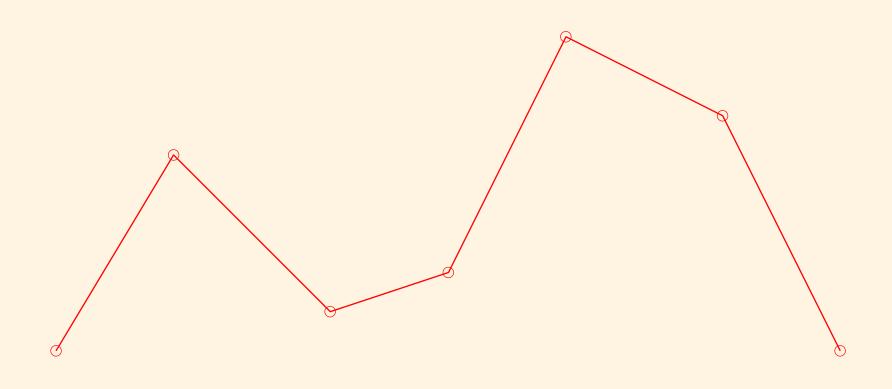
B-Splines (IIc2-5)



B-Splines (IIc3)

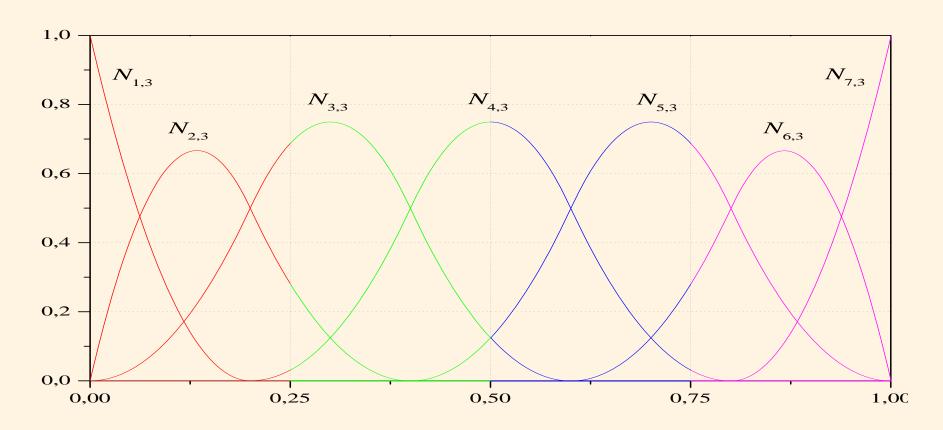


B-Splines (IId1-1)



Interp. por B-Splines: PUNTOS DE CONTROL (poligonal)

B-Splines (IId1-2)



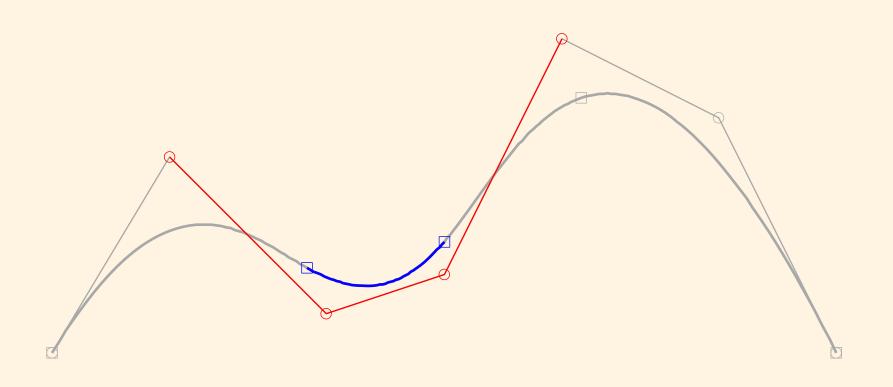
Interp. por B-Splines / ELEM. CÚBICOS DE 4 NODOS: FUNCIONES DE FORMA [LOCALES]

 $n = 7, \ p = 3; \ \Xi = [0.00, 0.00, 0.00, 0.00, 0.25, 0.50, 0.75, 1.00, 1.00, 1.00, 1.00] \leftarrow \underline{\mathsf{OPEN \& UNIFORM}}$

B-Splines (IId2-1)



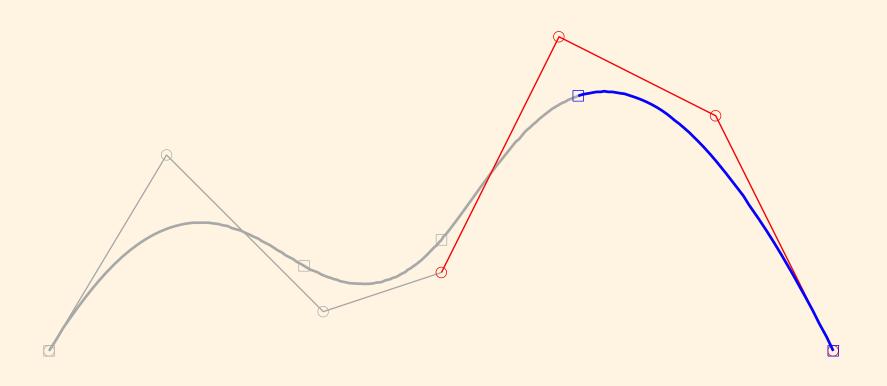
B-Splines (IId2-2)



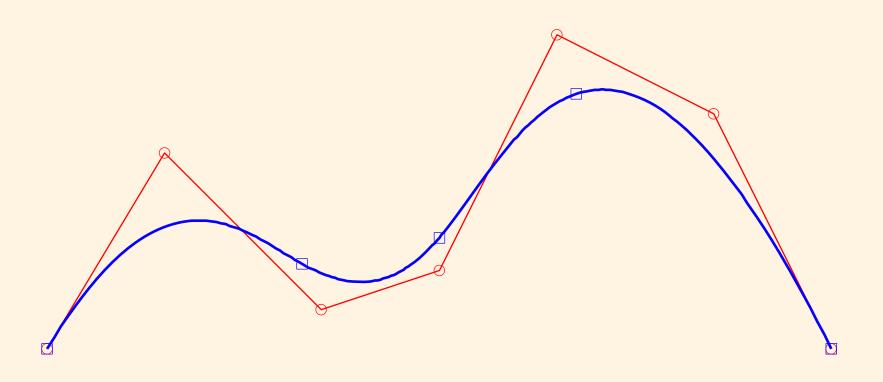
B-Splines (IId2-3)



B-Splines (IId2-4)



B-Splines (IId3)



B-Splines (III)

ALGORITMNOS DE PIEGL Y TILLER

♥ Subrutinas numéricamente estables y totalmente optimizadas para la recurrencia de Cox—De Boor.

NURBS

NURBS (≡ Non-Uniform Rational B-Splines)

Los NURBS son B-Splines en coordenadas homogéneas.

$$\begin{cases} \widehat{r}^{h}(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) \ \widehat{r}_{i}, \\ \widehat{u}^{h}(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) \ \widehat{u}_{i}, \end{cases} \qquad \xi \in [0,1].$$
 (*)

$$\text{donde } \widehat{r} = \left\{ \begin{array}{c} \lambda \bar{\boldsymbol{r}} \\ \lambda \end{array} \right\} \ \text{y } \widehat{u} = \left\{ \begin{array}{c} \lambda u \\ \lambda \end{array} \right\}.$$

♥ Los NURBS representan EXACTAMENTE las CURVAS CÓNICAS!

^(*) Las interp. geométrica y funcional se realizan con las mismas bases (formulación isoparamétrica).

B-Splines 2D & 3D

2D & 3D B-SPLINE INTERPOLATION

$$\begin{cases} \bar{\boldsymbol{r}}^h(\xi,\eta,\chi) = \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^\ell N_{i,p_\xi}^{\xi}(\xi) \ N_{j,p_\eta}^{\eta}(\eta) \ N_{k,p_\chi}^{\chi}(\chi) \ \bar{\boldsymbol{r}}_{i,j,k}, \\ u^h(\xi,\eta,\chi) = \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^\ell N_{i,p_\xi}^{\xi}(\xi) \ N_{j,p_\eta}^{\eta}(\eta) \ N_{k,p_\chi}^{\chi}(\chi) \ u_{i,j,k} \end{cases}$$
 $(\xi,\eta,\chi) \in [0,1]^3.$

- ♣ Producto tensorial ⇒ Topología Rectangular (Patch)
- Conectar "patches" requiere trabajo adicional.

Refinamiento (la)

OSLO KNOT INSERTION

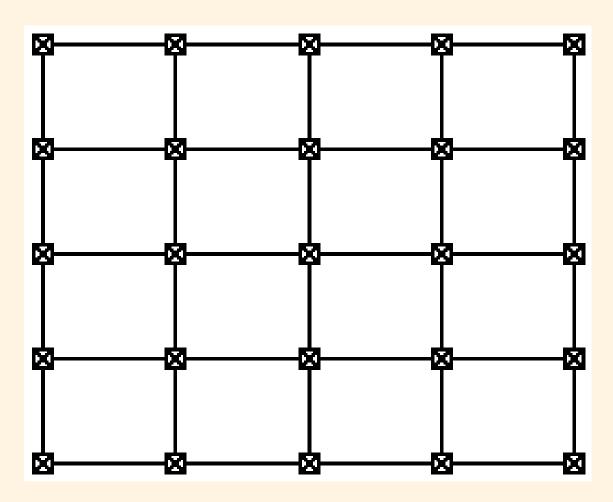
- Procedimiento simple que permite insertar knots sin cambiar la geometría. (*)
- Convierte al refinamiento tipo h en una tarea trivial.
- El refinamiento de malla se puede realizar fácilmente sobre la marcha.
- En 2D y 3D la inserción de nodos (knots) convierte al refinamiento tipo h en no-local.

^(*) ISOGEOMETRÍA: la interp. funcional se puede refinar sin modificar la geometría.

Refinamiento (lb)

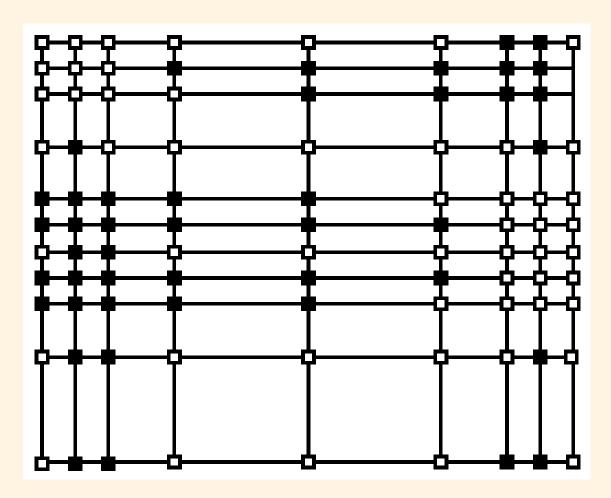
Necesidad de refinamiento local.

Refinamiento (Ic)



Producto tensorial de B-Splines.

Refinamiento (Id)



Efecto global del refinamiento en los productos tensoriales de B-Splines.

T-Splines (la)

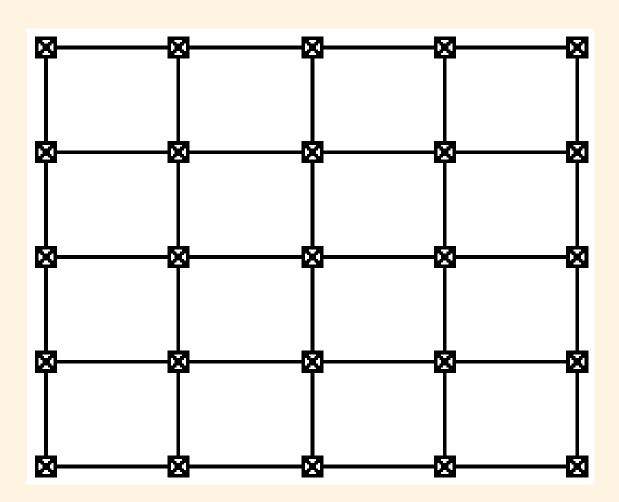
T-SPLINES

- Idea clave: Puntos T.
- Permiten topologías no rectangulares.
- Mantienen la compatibilidad con los NURBS.
- Extremadamente potentes para diseño.
- Producen refinamientos tipo h locales en interpolaciones 2D y 3D mediante B-Splines.

. . .

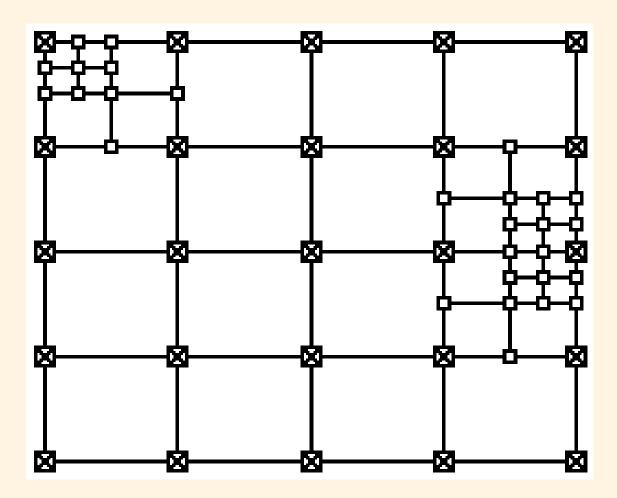
- Patentados (¿qué significa esto?)
- No totalmente comprendidos hasta el momento.

T-Splines (lb)



Producto tensorial de B-Splines.

T-Splines (VIIc)



Los T-Splines permiten realizar refinamientos locales.

IGA: implementación y posibilidades (la)

ANÁLISIS ISOGEOMÉTRICO

- Fácilmente implementable en los programas MEF actuales:
 - Los ELEMENTOS se substituyen por KNOT SPANS.
 - Los NODOS se substituyen por PUNTOS DE CONTROL.
 - Las FUNCIONES DE FORMA se substituyen por los alforitmos de PIEGL y TILLER.
 - L resto no se cambia (misma formulación, organización general del programa, fórmulas de integración, etc.).
- Enfoque alternativo: Extracción de Bézier

IGA: implementación y posibilidades (lb)

Ventajas:

- Los modelos de CAD se podrían analizar directamente (sin generación de malla). (*)
- Casi) El refinamiento de malla es (casi) trivial.

 La geometría no se modifica en el proceso.
- ♥ La continuidad se puede aumentar arbitrariamente. El coste computacional no crece desmesuradamente a cambio.
- Mayor capacidad para aproximar comportamientos complejos.

^(**) Muy difíciles (en la práctica imposibles) de resolver mediante el MEF

I

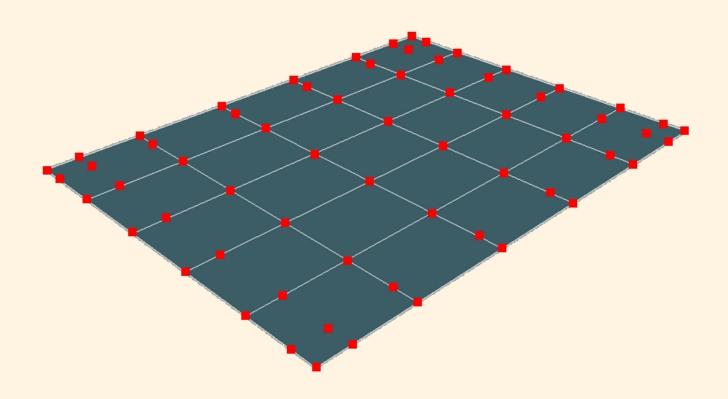
^(*) No se ha conseguido completamente, porque los sistemas CAD están diseñados para modelar superficies (principalmente) y no sólidos.

IGA: implementación y posibilidades (lc)

Inconvenientes:

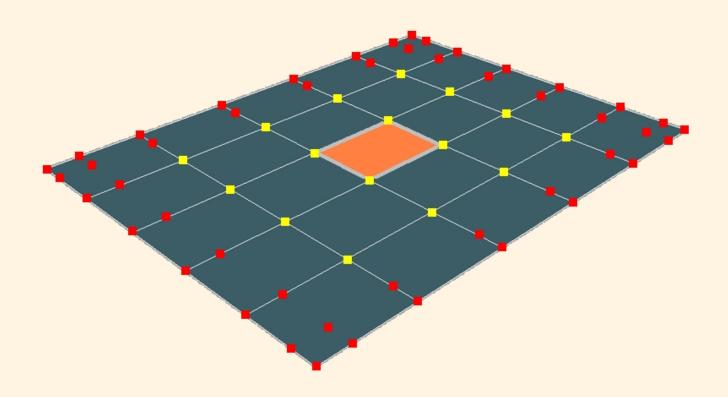
- ♠ Las variables son los valores de control, no los valores nodales.
- ♠ La manipulación de valores nodales no es trivial.
- El modelado geométrico es menos intuitivo.

IGA: implementación y posibilidades (lla)



IGA model of a surface: knot spans and control points. Por cortesía de VideaLAB http://videalab.udc.es/

IGA: implementación y posibilidades (IIb)



IGA model of a surface: concept of ELEMENT. Por cortesía de VideaLAB http://videalab.udc.es/

IGA: implementación y posibilidades (IIc)

Representación de comportamientos complejos mediante mo

 Efecto producido por el movimiento de los puntos de control (captura de pantalla)

```
<<u>Surface-CP.wmv</u>> (*)
```

 Efecto producido por el movimiento de los puntos de control (renderizado)

```
<<u>Surface.wmv</u>> (*)
```

^(*) Por cortesía de VideaLAB < http://videalab.udc.es/>

