
LINEAR ALGEBRA II Solutions to Problem Set 2.3

Orthogonal transformations (Academic Year 2022–2023)

Note: This is an unrevised, automatic translation.

1.– The Euclidean vector space IR3 referred to an orthonormal basis is considered. Get the matrix expression
in this base of:

(a) the orthogonal symmetry with respect to the subspace L{(1, 1, 1)}

We compute a basis of the subspace orthogonal to L{(1, 1, 1)}:

(x, y, z) · (1, 1, 1) = 0 ⇔ x+ y + z = 0 ⇒ L{(1, 1, 1)}⊥ = L{(1,−1, 0), (1, 0,−1)}

The symmetry matrix in the base B = {(1, 1, 1), (1,−1, 0), (1, 0,−1)} is:

SBB =

 1 0 0
0 −1 0
0 0 −1


(Observation: For symmetries it is not necessary that the base used be orthonormal, it is enough to
take any base formed by arbitrary bases of the direction with respect to which the symmetry and its
orthogonal subspace. However, for the rotations, choose a base orthonormal.)

To calculate the matrix in the initial base we make the base change:

SCC = MCBSBBMCB−1 =

=

 1 1 1
1 −1 0
1 0 −1

 1 0 0
0 −1 0
0 0 −1

 1 1 1
1 −1 0
1 0 −1

−1 =

−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3



2.– In the Euclidean vector space IR3 find the equations of a rotation of angle 90o and semiaxis generated
by the vector (3, 0, 4).

First we build a well oriented orthogonal basis with the first vector the semi-axis of rotation ~u1 =
(3, 0, 4).

We look for a second vector orthogonal to the first:

(x, y, z) · (3, 0, 4) = 0 ⇐⇒ 3x+ 4z = 0.

Take for example ~u2 = (0, 1, 0). We choose a vector orthogonal to the previous two:

(x, y, z) · (3, 0, 4) = 0 ⇐⇒ 3x+ 4z = 0

(x, y, z) · (0, 1, 0) = 0 ⇐⇒ y = 0

We take ~u3 = (4, 0,−3).

We check if the base {~u1, ~u2, ~u3} is well oriented, studying the sign of the determinant of the change of
base matrix with respect to the canonical base:∣∣∣∣∣∣

3 0 4
0 1 0
4 0 −3

∣∣∣∣∣∣ = −25 < 0



Therefore it is not well oriented. We change the sign of the third vector to correct it and normalize:

(3, 0, 4)

‖(3, 0, 4)‖
= (3/5, 0, 4/5),

(0, 1, 0)

‖(0, 1, 0)‖
= (0, 1, 0),

(−4, 0, 3)

‖(−4, 0, 3)‖
= (−4/5, 0, 3/5)

Then the basis B = {(3/5, 0, 4/5), (0, 1, 0), (−4/5, 0, 3/5)} is a well-oriented orthonormal basis with the
first vector in the same direction and sense as the semi-axis.

On that basis the rotation matrix is:

TB =

 1 0 0
0 cos(90o) −sin(90o)
0 sin(90o) cos(90o)

 =

 1 0 0
0 0 −1
0 1 0

 .

Finally we change the matrix to the canonical basis:

TC = MCBTBMBC = MCBTBM
−1
CB = MCBTBM

t
CB

where

MCB =
1

5

 3 0 −4
0 5 0
4 0 3


and M−1CB = M t

CB for being a base change matrix between orthonormal bases.

Operating results:

TC =
1

25

 9 −20 12
20 0 −15
12 15 16

 .

And the equations of rotation are:

t

x
y
z

 =
1

25

 9 −20 12
20 0 −15
12 15 16

x
y
z

 .

6.– In the vector space IR3 the usual scalar product and the positive orientation given by the canonical basis
are considered:

(ii) Calculate the matrix associated with a symmetry with respect to the equation plane x + y − z = 0. (1
point)

We begin by calculating a basis formed by the generators of the plane of symmetry and a vector
orthogonal to it. The latter can be the normal vector to the plane, formed by the coefficients of the
implicit equation (1, 1,−1) .

The other two are obtained by parametrically solving the given equation:

x+ y − z = 0 ⇒ y = −x+ z

where from:
x = a, y = −a+ b, z = b

and the generators are (1,−1, 0) and (0, 1, 1). So we take:

B = {(1,−1, 0), (0, 1, 1)︸ ︷︷ ︸
plane

, (1, 1,−1)︸ ︷︷ ︸
plane⊥

}

On such basis:

TB =

 1 0 0
0 1 0
0 0 −1





Finally we change it to the canonical:

TC = MCBTB(MCB)−1 =

 1 0 1
−1 1 1

0 1 −1

 1 0 0
0 1 0
0 0 −1

 1 0 1
−1 1 1

0 1 −1

−1 =

=

 1 0 1
−1 1 1

0 1 −1

 1 0 0
0 1 0
0 0 −1

 1

3

 2 −1 1
1 1 2
1 1 −1

 =
1

3

 1 −2 2
−2 1 2

2 2 1

 .

(iii) ¿Is it possible to achieve the above symmetry by properly composing two rotations? Reason your answer
(0.5 points).

It is impossible. The composition of two rotations is a rotation, because both are direct transformations
with associated matrix of positive determinant. However, a symmetry with respect to a plane is an
inverse transformation, with a negative determinant.

7.– Reasonably indicate the falsity or truth of the following questions:

(i) An orthogonal transformation on IR3 with two distinct real eigenvalues is a composition rotation with
symmetry.

FALSE. For example TC =

 1 0 0
0 −1 0
0 0 −1

 has two distinct real eigenvalues but is the matrix

associated with a rotation of 180 degrees.

(ii) The sum of two orthogonal transformations is an orthogonal transformation.

FALSE. For example, in IR2, Id and −Id are matrices associated to two orthogonal transformations but
their sum is the zero matrix that does not correspond to an orthogonal transformation (the determinant
of an orthogonal matrix is 1 or −1).

(iii) In IR2 a dot product can be defined with respect to which the vectors (1, 1) and (1, 0) are orthogonal.

TRUE. It is enough to consider the base B = {(1, 1), (1, 0)} and take as the Gram matrix of the scalar
product in that base the identity: GB = Id. By definition of a Gram matrix with respect to the base
B, (1, 1) · (1, 0) = (GB)12 = 0 and thus (1, 1)⊥(1, 0).

(iv) In IR2 a scalar product can be defined with respect to which the vector (1, 1) has zero norm.

FALSE. The only zero norm vector is the null vector.

8.– Reason the falsity or truth of the following questions:

(i) If T is the matrix of an orthogonal transformation in IR2 and trace(T ) = 1 then T is a rotation. (0.5
points)

TRUE. In the plane, an orthogonal transformation is either a rotation or a symmetry about a line. If
it is a symmetry, the associated matrix in a suitable basis is:

TB =

(
1 0
0 −1

)
where trace(TB) = 1 + (−1) = 0. The trace is preserved by changing the base, so in that case it would
have to happen that trace(T ) = trace(TB) = 0. But we are told that trace(T ) = 1. Therefore it is not
a symmetry and it is necessarily a rotation .

(ii) If T is the matrix of a rotation in IR2 then it has no real eigenvalues. (0.5 points)

FALSE. For example , if it is a rotation of zero degrees, the associated matrix is the identity T = Id
and 1 is an eigenvalue.



(iii) If we consider the Euclidean space IR3 with the usual conditions, T =

 0 1 0
1 0 0
0 0 1

 is the matrix of a

symmetry with respect to the plane x− y = 0. (0.5 points)

TRUE. In IR3 an orthogonal transformation is:

- One rotation, if the determinant of its associated matrix is 1.

- A composition rotation with a symmetry with respect to the plane perpendicular to the axis of
rotation, if the determinant of its associated matrix is −1.

In this case det(T ) = −1, so we are in the second case. The angle α of rotation satisfies:

−1 + 2cos(α) = trace(T ) ⇐⇒ α = ±arcs
(

1 + trace(T )

2

)
= ±arcs

(
1 + 1

2

)
= 0

Therefore the rotation is zero degrees and in reality it is simply symmetry with respect to a plane .
The plane of symmetry are the eigenvectors associated with 1:

(T − Id)

x
y
z

 =

 0
0
0

 = 0 ⇐⇒ xy = 0.

(iv) In the Euclidean space IR3 (usual conditions) there is an orthogonal transformation t. Gauss holds that
it is a rotation of 90 degrees and Euler that it is a rotation of −90 degrees. ¿Can they both be right?
(0.5 points)

YES. It is enough to take into account that if we change the semi-axis of rotation of direction, the sign
of the angle changes. For example, we consider the matrix of a transformation:

T =

 1 0 0
0 cos(90) −sin(90)
0 sin(90) cos(90)

 =

 1 0 0
0 0 −1
0 1 0

 .

the angle of rotation is:

α = ±arcs
(
trace(T )− 1

2

)
= ±90o

The semiaxis of rotation is any eigenvector associated with 1. We can take (1, 0, 0) but also (−1, 0, 0).

- If the semi-axis is ~u1 = (1, 0, 0) to see the sign of the angle we take a base:

B = {~u1, ~v, T~v} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

where ~v is any vector independent of the semi-axis. The sign of the angle is sign(det(MCB)) = sign(1).
It is therefore a rotation of semi-axis (1, 0, 0) and angle +90o.

- If the semi-axis is ~u1 = (−1, 0, 0) we do the same thing:

B = {~u1, ~v, T~v} = {(−1, 0, 0), (0, 1, 0), (0, 0, 1)}

where ~v is any vector independent of the semi-axis. The sign of the angle is sign(det(MCB)) = sign(−1).
It is therefore a rotation of semi-axis (−1, 0, 0) and angle −90o.



11.– In the Euclidean space IR3 with the usual dot product we consider the planes π1 and π2 of equations:

π1 : x+ yz = 0
π2 : 2x− y + z = 0

Find the equations of a rotation that takes the plane π1 in the plane π2.

The axis of rotation corresponds to the straight intersection of both planes:{
x+ yz = 0

2x− y + z = 0
⇐⇒

{
x = 0

y = z

A direction vector of it is (0, 1, 1) .

The rotation has to carry the normal vector of one plane over the other, that is, the (1, 1,−1) on the
direction given by (2,−1, 1). Let’s see the angle α that they form:

cos(α) =
(1, 1,−1) · (2,−1, 1)

‖(1, 1,−1)‖‖(2,−1, 1)‖
= 0.

They are perpendicular. Therefore we will choose a semi-axis rotation (0, 1, 1) , of 90 degrees and in
such a way that the positive orientation is given by the base:

B = {(0, 1, 1), (1, 1,−1), (2,−1, 1)}.

Let’s build that rotation. We obtain an orthogonal base whose first vector is the semi-axis of rotation:

B′ = {(0, 1, 1), (0, 1,−1), (1, 0, 0)}

We check that B and B′ have the same orientation. For this, it is enough that the determinant of the
matrix of base change with respect to the canonical one has the same sign:

det(MCB) = det

 0 1 2
1 1 −1
1 −1 1

 = −6 < 0, det(MCB′) = det

 0 0 1
1 1 0
1 −1 0

 = −2 < 0.

Now we normalize the base B′:

B′′ = { (0, 1, 1)

‖(0, 1, 1)‖
,

(0, 1,−1)

‖(0, 1,−1)‖
,

(1, 0, 0)

‖(1, 0, 0)‖
} = {(0, 1√

2
,

1√
2

), (0,
1√
2
,− 1√

2
), (1, 0, 0)}.

The rotation matrix in base B′′ is:

FB′′ =

 1 0 0
0 cos(90) −sin(90)
0 sin(90) cos(90)

 =

 1 0 0
0 0 −1
0 1 0

 .

We pass it to the canonical base:

FC = MCB′′FB′′MBC′′ = MCB′′FB′′M
−1
CB′′ = MCB′′FB′′M

t
CB′′

where we use that the bases B′′ and C are both orthonormal and therefore the inverse of the change of
base matrix coincides with its transpose. Operating remains:

FC =

 0 1/
√

2 −1/
√

2
−1/
√

2 1/2 1/2
1/
√

2 1/2 1/2

 .

The equations of rotation are: x′

y′

z′

 = FC ·

x
y
z

 .



12.– In IR2 with respect to the usual scalar product, consider a linear transformation t : IR2−→IR2 whose
associated matrix with respect to the canonical basis is:(

a b
b a

)
.

(i) Find a and b so that t is a symmetry about a line.

For it to be a symmetry it must be an orthogonal transformation with associated determinant matrix
−1. For it to be orthogonal, TCT

t
C = Id must be fulfilled:(

a b
b a

)(
a b
b a

)t

=

(
1 0
0 1

)
⇐⇒ a2 + b2 = 1, 2ab = 0.

For the determinant to be 1:

det

(
a b
b a

)
= 1 ⇐⇒ a2 − b2 = −1.

From the equations a2 + b2 = 1 and a2 − b2 = −1 we obtain a = 0 and b = ±1. In this case, it also
holds that 2ab = 0.

Therefore there are two cases:

i) a = 0 and b = 1.

ii) a = 0 b = −1.

(ii) For each of the values of a and b obtained in the previous section, calculate the axis of symmetry.

The axis of symmetry corresponds to the eigenvectors of TC associated with 1:

i) a = 0 and b = 1.

(TC − 1Id)

(
x
y

)
=

(
0
0

)
⇐⇒

(
−1 1

1 −1

)(
x
y

)
=

(
0
0

)
⇐⇒ xy = 0.

The axis of symmetry has the equation x− y = 0, that is, it is the subspace L{(1, 1)}.

ii) a = 0 and b = −1.

(TC − 1Id)

(
x
y

)
=

(
0
0

)
⇐⇒

(
−1 −1
−1 −1

)(
x
y

)
=

(
0
0

)
⇐⇒ x+ y = 0.

The axis of symmetry has the equation x+ y = 0, that is, it is the subspace L{(1,−1)}.

14.– Reason the truth or falsity of the following statements.

(i) The trace of the matrix associated with a symmetry with respect to a line in the plane is 0.

TRUE. The trace of an application matrix does not depend on the basis from which it works, because
the trace is preserved by similarity. So if it is a symmetry in the plane with respect to a line, in a
suitable basis (first vector the axis of symmetry and second orthogonal to it) the associated matrix is:(

1 0
0 −1

)
and therefore its trace (with respect to any base) is 1 + (−1) = 0.

(ii) If the matrix associated with an orthogonal transformation in the plane has trace 0 then it is a symmetry
with respect to a line.



FALSE. For example , if we consider a rotation matrix of angle π/2:(
cos(π/2) −sin(π/2)
sin(π/2) cos(π/2)

)
=

(
0 −1
1 0

)
has trace 0 and is obviously NOT a symmetry with respect to a line.

(iii) A symmetry in space with respect to a line is an inverse transformation.

FALSE. A symmetry with respect to a straight line in space corresponds to a rotation of angle π. A
rotation matrix has a positive determinant and therefore it is a direct transformation.

(iv) In space, the composition of a symmetry with respect to a point and a symmetry with respect to a plane
is always a rotation.

TRUE. The matrix associated with a symmetry with respect to a point with respect to any base is
−Id, it has a determinant −1. The matrix associated with symmetry with respect to a plane has a
determinant −1 as well. Therefore its composition is represented by a matrix product of these two and
then with determinant (−1)(−1) = 1: it is a rotation.


